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Abstract. In this paper, a class of nonlinear diffusion–convection equations,ut = (D(u)unx)x +
P(u)ux , which has quite a large number of physical applications, is analysed by using symmetry
group methods which include the classical method, the potential symmetry method and the
generalized conditional symmetry method. A complete classification of the functional forms of the
diffusion and convection coefficients is presented when the equation admits Lie’s point symmetry
groups and potential symmetry groups. The separation of variables for the equation is investigated
using the generalized conditional symmetry approach. For some interesting cases, exact solutions
using the method of separation of variables are discussed in detail.

1. Introduction

This paper is concerned with a class of nonlinear parabolic equations with diffusion and
convection terms

ut = (D(u)(ux)n)x + P(u)ux (1)

whereu(x, t) is the unknown function,D(u) andP(u) are some smooth functions and the
subscripts denote the partial derivatives with respect to the indicated variables. Equation (1)
has a wide range of applications (see Atkinsonet al [1], Estebanet al [2] and King [3]). Some
important nonlinear partial differential equations (PDEs) are the special cases of equation (1)
or its potential form

ut = D(ux)(uxx)n + P̃ (ux) (2)

where and hereafter̃P(u) = ∫ u0 P(s) ds.
In the case ofn = 1, equation (1) describes the vertical one-dimensional transport of

water in homogeneous, non-deformable porous media. WhenP = 0, the group classification
using Lie’s classical method was presented in Ames [4], Ovisiannikov [5] and Blumanet al
[6]. WhenP 6= 0, the group classification of equation (1) was given by Oronet al [7] and
Yung et al [8]. An approach for finding nonclassical symmetries (conditional symmetries)
involving the reduction of equation (1) was considered by Clarksonet al [9], Arrigo et al [10],
Serov [11] and Galaktionovet al [39]. The nonlocal symmetry groups or potential symmetries
of equation (1) were studied by Blumanet al [12], Akhatovet al [13] and Sophocleous [14].
Separation of variables of equation (1) were studied by Dolye [15] using a slightly different
method, i.e., the compatibility of differential form. Fokaset al [16], Zhdanov [17], Qu [18, 19]
and Cherniha [20] discussed the generalized conditional symmetries of equation (1) or its more
general form. Some new exact solutions were then obtained, these solutions cannot generally
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6272 K-S Chou and C Qu

be obtained by the classical and nonclassical methods. Various ansatz-based methods for
finding exact solutions of equation (1) were also used in King [21], Fuchchychet al [22] and
Galaktionov [40]. The homologous property of equation (1) was discussed in [23, 24]. As one
can see, this case has been studied thoroughly by many authors.

In the casen = −1, equation (1) can be linearized by the point transformations.
Equation (2) contains an important nonlinear equation (Blumanet al [25], Fokaset al [26])

ut = u−2
x uxx + αu−1

x . (3)

Equation (3) can be linearized by the hodograph transformations.
For generaln, some elegant local and nonlocal equivalence transformation for equation (1)

and other types of nonlinear diffusion equations were derived by King [3, 27]. These
transformations have been used to obtain new exact solutions and to display the behaviour
of solutions for the initial and boundary value problems [27, 28].

WhenD(u) = (1 +u2
x)

1−3n
2 , n 6= 0, P̃ (u) = 0, equation (2) becomes

ut = (1 +u2
x)

1−3n
2 (uxx)

n (4)

which describes the curve evolution in a nonaffine case, we refer to it as the nonaffine curve-
shortening equation. It has some important solutions, those solutions are closely related to the
symmetry groups of equation (4). Some group-invariant solutions have been applied to study
the evolution [29, 30]. Whenn = 1

3, equation (4) is then simplified to

ut = (uxx)1/3. (5)

Equation (5) describes the curve evolution in the affine case, which admits richer symmetry
groups (see Ibragimov [31] and Chouet al [32]), and is generally referred to as the affine curve-
shortening equation. The nonlocal Bäcklund transformation of equation (5) was obtained in
[3]. The group-invariant solutions of equation (5) were studied in detail by Chouet al [32].

The purpose of the present paper is devoted to the study of the symmetry groups and
separation of the variables of equation (1). In section 2, we present a group classification
of equation (1) using Lie’s classical method, namely, we determine functional forms for
the coefficient functionsD(u) andP(u) for which different Lie point symmetry groups are
admitted. In section 3, we use the method introduced by Blumanet al [12] to study the
existence of nontrivial potential symmetries of equation (1), the results of papers [12–14] are
then extended. Section 4 contains a Lie point symmetry group classification on the potential
equation of (1) i.e., equation (2). In section 5, we discuss the separation of variables of
equation (1), namely, under what conditions forD(u) andP(u), equation (1) has the separable
solution

q(u) = f (t)g(x) (6)

for some functionsq(u). Section 6 concludes with a discussion of our results.

2. A group classification of equation (1)

The classical method for finding symmetry reductions of PDEs is the Lie symmetry group
method. To apply Lie’s classical method to akth-order 1+1-dimensional PDE

1(x, t, ut , ux, uxx, . . .) = 0 (7)

we consider one-parameter transformations in(x, t, u) given by

x∗ = x + εξ(x, t, u) + O(ε2)

t∗ = t + ετ(x, t, u) + O(ε2)

u∗ = u + εφ(x, t, u) + O(ε2)

(8)
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Table 1. Group classification of equation (1) withn 6= −1, 1

D(u) P (u) Infinitesimal generators

Arbitrary Arbitrary X1 = ∂
∂t

,X2 = ∂
∂x

uα, α 6= 0 β ln u, β 6= 0 X1, X2, X3 = α+n−1
n

t ∂
∂t

+ ( α+n−1
n

x − βt) ∂
∂x

+ u ∂
∂u

uα, α 6= 0 βuγ , β 6= 0 X1, X2, X4 = α+n−1−γ (1+n)
n

t ∂
∂t

+ α+n−1−γ
n

x ∂
∂x

+ u ∂
∂u

eαu, α 6= 0 βu, β 6= 0 X1, X2, X5 = α
n
t ∂
∂t

+ ( α
n
x − βt) ∂

∂x
+ ∂
∂u

eαu, α 6= 0 βeγ u, β 6= 0 X1, X2, X6 = α−(n+1)γ
n

t ∂
∂t

+ α−γ
n
x ∂
∂x

+ ∂
∂u

uα, α 6= 0 0 X1, X2, X7 = t ∂∂t + 1
n+1x

∂
∂x

X8(α) = u ∂
∂u

+ (1− α − n)t ∂
∂t

1 0 X1, X2, X7, X8(0), X9 = ∂
∂u

1 β, β 6= 0 X1, X2, X9, X10 = t ∂∂t + x ∂
∂x

+ n
n−1u

∂
∂u

eαu, α 6= 0 0 X1, X2, X7, X11 = α
n
t ∂
∂t

+ ∂
∂u

whereε is the group parameter. Requiring that equation (7) is invariant under the one-parameter
group of transformations (8) yields an overdetermined system ofξ , τ andφ, which is carried
out by setting

X(k)(1)|1=0 = 0 (9)

whereX is the corresponding infinitesimal generator of the transformations (8).X(k) is the
kth prolongation ofX,

X(k) = X + φt
∂

∂ut
+ φx

∂

∂ux
+ φxx

∂

∂uxx
+ · · ·

whereφt , φx andφxx, . . . , are given explicitly in terms ofξ , τ andφ and their derivatives (see
[5, 6, 33–35]). From (9), we obtain the following nine determining equations forξ , τ andφ:

τx = τu = 0

φx = φt = 0

ξu = ξxx = 0

τtD + φD′ + (n− 1)Dφu − (n + 1)Dξx = 0

nφuD
′ + τtD′ + φD′′ − (n + 1)ξxD

′ + nDφuu = 0

ξt + τtP + φP ′ − Pξx = 0.

(10)

We do not consider the cases ofn = −1, 1. If n = −1, performing the transformations

x −→ v u −→ y

equation (1) is transformed to a linear PDE

vt = (D(y)vy)y + P(y). (11)

The group classification of the casen = 1 is given in [7, 8]. Solving system (10), we arrive at
the group classification of equation (1) presented in table 1. It is easy to see from table 1 that
the maximal dimension of the classical symmetry group for equation (1) is five. Except for
translations in time and space and scale transformations, there are no other types of symmetry
groups, such as Galilean groups.

3. Potential symmetries of equation (1)

In the case ofn = 1, the potential symmetries (or nonlocal symmetries) of equation (1) were
studied by several authors, such as Blumanet al [12] (P = 0), Akhatovet al [13] (P = 0) and
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Sophocleous [14] (P 6= 0). According to the method of Blumanet al [12, 33], if we introduce
a potential variablev for a PDE (7), which depends on the global property ofu, and write the
PDE as the conserved form of further unknown functions, we then obtain a systemZ(x, u, v).
Any Lie group of transformations forZ(x, u, v) induces a symmetry for equation (7), when
at least one of the generators which corresponds to the variablesx, u depends explicitly on
the potential variablev, the local symmetry ofZ(x, u, v) induces a non-local symmetry of
equation (7). These normal symmetries are called potential symmetries.

Similar to the approach of [12] by introducing the potential variablev, equation (1) is
written as a system of two first-order PDEs

u = vx vt = D(u)(ux)n + P̃ (u). (12)

We determine the infinitesimal transformations of the form

x∗ = x + εξ(x, t, u, v) + O(ε2)

t∗ = t + ετ(x, t, u, v) + O(ε2)

u∗ = u + εφ(x, t, u, v) + O(ε2)

v∗ = v + εψ(x, t, u, v) + O(ε2)

(13)

which are admitted by equation (1). These transformations induce potential symmetries of
equation (1) and point symmetries of equation (2).

It follows from the infinitesimal criterion for invariance of PDEs that equation (12) admits
the Lie point group of transformations (13) if and only if

V (1)(u− vx) = 0 V (1)(vt −D(u)(ux)n − P̃ (u)) = 0 (14)

wheneveru = vx , andvt = D(u)unx + P̃ (u), whereV (1) is the first extended generator of

V = ξ ∂
∂x

+ τ
∂

∂t
+ φ

∂

∂u
+ψ

∂

∂v
(15)

and is given by

V (1) = V + φt
∂

∂ut
+ φx

∂

∂ux
+ψt ∂

∂vt
+ψx ∂

∂vx
.

From equations (14) we get an overdetermined system forξ , τ , φ andψ :

τx = τu = τv = ξu = 0

φx + uφv = 0

ψu − uξu = 0

(ψv − τt )D − ξvuD − φD′ − nD(φu − ξx) + nuDξv = 0
ψt + (ψv − τt )P̃ − uξt − uP̃ ξv − τvP̃ 2 − φP (u) = 0
ψx − φ + (ψv − ξx)u− u2ξv = 0.

(16)

Analysis of system (16) leads to the following theorem.

Theorem 1. Equation (1) admits nontrival potential symmetries if and only ifD(u) takes the
form

D(u) = (u2 + pu + q)
1−3n

2 exp

[
r

∫ u

0

ds

s2 + ps + q

]
(17)

andP̃ satisfies the following first-order ordinary differential equation:

P̃ ′ +
λ− u

u2 + pu + q
P̃ +

µ + κu

u2 + pu + q
= 0 (18)

wherep, q, r, λ, µ andκ are constants.
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This theorem generalizes the known results of the casen = 1 to a more general form.
Whenn = 1,D(u) is of the form in [12, 13] andP̃ is of the form in [14]. It is interesting to
note that whenr = 0, andP̃ = 0, equation (1) with (17) becomes the nonaffine (n 6= 1

3) or
affine (n = 1

3) curve-shortening equation.
We do not present the nonlocal symmetries of equation (1) here, and we are more interested

in the Lie point symmetries of equation (2) because (2) admits much richer symmetry groups. In
fact, the point symmetries of equation (2) are equivalent to nonlocal symmetries of equation (1)
from the point of view of obtaining group-invariant solutions.

4. A group classification of equation (2)

Now we consider the group classification of equation (2), i.e., the potential form of equation (1).
As for equation (1), (2) is invariant under the one-parameter Lie group of transformations (8)
if and only if ξ , τ andφ satisfy the following equations:

φxx + (2φxu − ξxx)ux + (φuu − 2ξxu)(ux)
2 − ξuu(ux)3 = 0 (19a)

φt + (ξuu
2
x − (φu − ξx)ux − φx)P + (φu − τt − ξuux)P̃ − ξtux = 0 (19b)

D′ξu(ux)2 −D′(φu − ξx)ux −D′φx +D[(3n− 1)ξuux + φu − τt − nφu + 2nξx ] = 0 (19c)

τx = τu = 0. (19d)

Equation (19a) is a polynomial ofux . Equating the coefficients to zero yields the following
equations ofξ andφ:

φxx = ξuu = 0 (20a)

2φxu − ξxx = 0 (20b)

φuu − 2ξxu = 0. (20c)

From (20a), we findφ andξ are linear functions ofx andu, respectively, i.e.,

ξ = a1(x, t)u + a2(x, u) φ = b1(t, u)x + b2(t, u). (21)

Taking into account (20b) and (20c), we get

ξ = (d2x + f2)u + d3x
2 + f1x + f3

φ = (d3u + d5)x + d2u
2 + d4u + d1

(22)

wheredi andfi , i = 1, 2, . . . , are undetermined functions oft . Substituting (22) into (19b)
and (19c), we have the following systems relatingdi , fi , τ ,D(u) andP̃ (u):

(d2ux + d3)D
′ − 2d2D = 0 (23a)

(d2u
2
x + d3ux)D

′ + [(3n− 1)d2ux + (3n + 1)d3]D = 0 (23b)

d ′2 = d ′3 = 0 (23c)

d ′4 − d2uxP − d3P + 2d2P̃ − f ′2ux = 0 (23d)

d ′5 + d3P̃ + (d3P − f ′ − d2P̃ )ux + d2Pu
2
x = 0 (23e)

[f2u
2
x + (f1− d4)ux − d5]D′ + [(3n− 1)f2ux + (1− n)d4 − τ ′ + 2nf1]D = 0 (23f)

[f2u
2
x + (f1− d4)ux − d5]D′ + (d4 − τ ′ − f2ux)P̃ − f ′3ux + d ′6 = 0. (23g)

By solving the above system, we obtain the following classification theorem.

Theorem 2. All possible maximal algebras of invariance of equation (2) for any functions
D(u) andP̃ (u) are presented in table 2.
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Table 2. Group classification of equation (2) withn 6= −1, 1.

n D(ux) P̃ (ux) Infinitesimal generators

A A A V1 = ∂
∂t
, V2 = ∂

∂x
, V3 = ∂

∂u

A A 0 V1, V2, V3,

V4 = (1 +n)t ∂
∂t

+ x ∂
∂x

+ u ∂
∂u

n 6= 1
3 1 0 V1, V2, V3, V5(n) = x ∂

∂x
+ 2nt ∂

∂t
,

V6 = x ∂
∂u
, V7(n) = u ∂

∂u
+ (1− n)t ∂

∂t
,

n 6= 1
3 1 λe−sux V1, V2, V3,

V8 = s(n + 1)t ∂
∂t

+ sx ∂
∂x

+ (su + nx) ∂
∂u

n 6= 1
3 1 − λ2u2

x V1, V2, V3,

V9 = x ∂
∂u

+ λt ∂
∂x

n 6= 1
3 1 (ux +µ)−

1
n [λ− s ln(ux +µ)] V1, V2, V3, V10 = (n + 1)x ∂

∂x

+[(2n + 1)u + nµx + snt ] ∂
∂u

n 6= 1
3 1 λ(ux +µ)s V1, V2, V3

V11 = [(n + 1)(µ− s)− 2(n− 1)]t ∂
∂t

+(µ− s)x ∂
∂x

+ [2µx + (2 +µ− s)u] ∂
∂u

n 6= 1
3 1 λ ln(ux +µ) V1, V2, V3

V12 = 2t ∂
∂t

+ x ∂
∂x

+ (2u +µx + λt) ∂
∂u

1
3 1 λ(u2

x − µ2)
1
2 (
ux−µ
ux+µ )

s V1, V2, V3, V13 = 8µst ∂
∂t

+(u + 6sµx) ∂
∂x

+µ(µx + 6su) ∂
∂u

1
3 1 0 V1, V2, V3, V5(

1
3), V6, V7(

1
3), V14 = u ∂

∂x
1
3 1 1

2s − s
4µ (ux − µ) ln ux+µ

ux−µ V1, V2, V3, V15 = 4µt ∂
∂t

+(u + 3µx) ∂
∂x

+ (3u +µx + st) ∂
∂u

1
3 1 − 1

2s − s
4µ (ux +µ) ln ux−µ

ux+µ V1, V2, V3, V16 = −4µt ∂
∂t

+(u + 3µx) ∂
∂x

+µ(3u +µx − st) ∂
∂u

1
3 1 λ(u2

x +µ2)
1
2 es arctanuxµ V1, V2, V3, V17 = 4µst ∂

∂t

+(u + 3µsx) ∂
∂x

+µ(3su− µx) ∂
∂u

1
3 1 λux exp(s/ux) V1, V2, V3

V18 = −4st ∂
∂t

+ (u− 3sx) ∂
∂x
− 3su ∂

∂u

A D1 0 V1, V2, V3, V5

V19 = 2µst ∂
∂t

+ u ∂
∂x

+µ2x ∂
∂u

A D1 λ(u2
x − µ2)

1
2 (
ux−µ
ux+µ )

σ V1, V2, V3,

V20 = 2
n
µ((n + 1)σ − ns)t ∂

∂t

+(u + 2µ(σ−s)
n

x) ∂
∂x

+ (µ2x + 2µ(σ−s)
n

u) ∂
∂u

A D1 λ− λ
2µ (ux − µ) ln ux+µ

ux−µ V1, V2, V3,

V21 = µ
n
(n + 1− 2s)t ∂

∂t
+ (u + 1−2s

n
µx) ∂

∂x

+µ( 1−2s
n
u +µx + 2λt) ∂

∂u

A D1 −λ + λ
2µ (ux +µ) ln ux+µ

ux−µ V1, V2, V3,

V22 = −µn (n + 1 + 2s)t ∂
∂t

+ (u + 1−2s
n
µx) ∂

∂x

+µ( 1−2s
n
u +µx + 2λt) ∂

∂u

A D2 0 V1, V2, V3, V5

V23 = µst ∂∂t + u ∂
∂x
− µ2x ∂

∂u

A D2 (u2
x +µ2)

1
2 exp[σ arctanux

µ
] V1, V2, V3,

V24 = −µn [(n + 1)σ + s]t ∂
∂t

+[u− µ
n
(σ + s)x] ∂

∂x

−[ µ
n
(σ + s)u +µ2x] ∂

∂u

A D2 λux exp( σ
ux
) V1, V2, V3,

V25 = [(n + 1)σ − µs]t ∂
∂t

+[nu + (σ − µs)x] ∂
∂x

+ (σ − µs)u ∂
∂u



Nonlinear diffusion–convection equations 6277

Table 2. (Continued.)

n D(ux) P̃ (ux) Infinitesimal generators

A (ux − µ)s 0 V1, V2, V3,
V26 = (2n + s)t ∂

∂t
+ x ∂

∂x
+µx ∂

∂u

V27 = (1− n− s)t ∂∂t + (u− µx) ∂
∂u

A (ux − µ)s λ(ux − µ) ln(ux − µ) V1, V2, V3, V28 = (n + s − 1)t ∂
∂t

+[(n− 1 + s)x − nλt ] ∂
∂x

+[(s + 2n− 1)u− µnx + nλµt ] ∂
∂u

A (ux − µ)s λ ln(ux − µ) V1, V2, V3, V29 = (2n + s − 1)t ∂
∂t

+(n− 1 + s)x ∂
∂x

+ [(2n + s − 1)u

−µnx − λ(n + s − 1)t ] ∂
∂u

A esux 0 V1, V2, V3, V5

V30 = x ∂
∂u
− st ∂

∂t

A esux λeσux V1, V2, V3

V31 = [s − (n + 1)σ ]t ∂
∂t

+ (s − σ)x ∂
∂x

+[nx + (s − σ)u] ∂
∂u

A esux λu2
x V1, V2, V3, V32 = st ∂∂t

+(sx + 2λnt) ∂
∂x

+ (nx + su) ∂
∂u

n = − 1
3 1 0 V1, V2, V3, V5(n), V6, V7(n),

V33 = x2 ∂
∂x

+ ux ∂
∂u

In table 2,λ, s, µ andσ are some constants. ‘A’ denotes arbitrary.D1 andD2 are given
by

D1 = (u2
x − µ2)

1−3n
2

(
ux − µ
ux +µ

)s
and

D2 = (u2
x +µ2)

1−3n
2 exp

[
s arctan

ux

µ

]
.

From table 2, we see that the maximal dimension of the symmetry groups of equation (2)
is seven. Two equations have seven-dimensional symmetry groups. They are equation (5) and
the equation

ut = (uxx)− 1
3 . (24)

In fact, equation (5) can be transformed into equation (24) by the nonlocal transformations
of independent and dependent variables [3, 27]. An interesting feature of equation (5) is
that it admits the nonlocal B̈acklund transformation [3]. From the geometric point of view,
equation (5) is the simplest and most important nonlinear PDE. It admits an affine group as
the symmetry group, and describes the curve evolution in the affine case. It also has important
applications in image processing (see Alvarezet al [36]). Equation (5) admits much richer
symmetry groups than even the standard 1 + 1-dimensional heat equation, as can be seen from
the following theorem.

Theorem 3. An optimal system of symmetry groups of equation (5) is generated by

{V1, V2, V1 + V3, V6− V14, V6− V14± V1, V5 + V7, V5 + V7 + α(V6− V14)(α 6= 0)

V6 + V14, V14, V6 + V2, V6 + V14 + V1, V6± V1, V6 + V2 ± V1,

V5 + V7 + V6 + V14V5 + V7 + V6 + V14 + V3,

V5 + V7 + α(V6 + V14)(α > 0, α 6= 1), V5 + V7 + V6}.
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Using the above optimal system, we can provide a complete classification for the group
invariant solutions. These include travelling wave solutions, spiral wave solutions, eternal
solutions, self-similar solutions and eternal-similarity solutions. (For a detailed discussion of
these solutions refer to [32].)

5. Separation of variables of equation (1)

We now turn to the discussion of the separation of variables of equation (1). The method used
here is the generalized conditional symmetry method developed by Fokaset al and Zhdanov
(see [16–20]). The case wheren = 1 andP = 0 was discussed by Dolyeet al [15] who used
a slightly different method, i.e., the compatibility of differential forms.

Let us give a brief discussion on the generalized conditional symmetry method. Let K(t,u)
denotes a function which depends on a differentiable manner ofu, ux, uxx, . . . , and t . The
functionσ(t, x, u) is a generalized symmetry of the equation

ut = K(t, u) (25)

if and only if

∂σ

∂t
= [K, σ ] (26)

where [K, σ ] = K ′σ − σ ′K, and the primes denote the Frechet derivative. The concept
of conditional symmetry was introduced by Bluman and Cole in [37] under the name of
nonclassical symmetry. The generalized conditional symmetries are a generalization of the
conditional symmetries as generalized symmetries are a generalization of Lie point symmetries.

Definition 1. The functionσ(t, x, u) is a generalized conditional symmetry of equation (25),
if there exists a functionF(t, x, u, σ ) such that

∂σ

∂t
= [K, σ ] + F(t, x, u, σ ) F (t, x, u,0) = 0 (27)

whereK(t, u) and σ(t, x, u) are differentiable functions oft , x and u, ux, uxx, . . . , where
F(t, x, u, σ ) is a differentiable function oft, x, u, ux, uxx, . . . , andσ, σx, σxx, . . ..

From the definition, we immediately have the following theorem.

Theorem 4. If σ is independent oft explicitly, thenσ is a generalized conditional symmetry
of equation (25) if and only if

σ ′K = 0 (28)

wheneverut = K andσ = 0.

A significant feature of the generalized conditional symmetry method is that one can
use the compatibility ofσ = 0 and the governing equation to get the exact solutions of the
considered equation. If equation (25) has a separable solution

u = f (t)g(x). (29)

After introducing the transformationv = ln u for equation (25), the derived equation ofv(x, t)
has a solution of the form

v(x, t) = f̄ (t) + ḡ(x). (30)

Equivalently,v satisfies the constraint

vxt = 0. (31)
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To proceed with our discussion, in a manner similar to the approach of [15], we consider
a more general PDE

vt = B(v)(vx)n−1vxx +A(v)(vx)
n+1 +Q(v)vx. (32)

WhenB = nD, A = D′, equation (32) is just equation (1). Moreover, we have the following
theorem.

Theorem 5. There is a smooth functionv = h(u) defined on the entire common domain of the
definition ofB(v) andA(v) and unique up to affine transformations such that equation (32)
has the form (1).

Proof. Equation (32) can be transformed to equation (1) by transformationv = h(u) if and
only if

nD = B(h′)n−1 D′ = A(h′)n +B(h′)n−2h′′ P = Q(h(u)). (33)

From system (33), we findh(u) can be determined implicitly by∫ h(u) 1

B(s)
exp

[ ∫ s A(s̃)

B(s̃)
ds̃

]
ds = u

andD(u) andP(u) are determined by

D(u) = 1

n
B(h(u))(h′)n−1

and

P(u) = Q(h(u)).
Equation (32) has the separable solution (29) if and only if it has the additively separable
form (30), because equation (32) preserves the same form under the transformationv→ ln v.
Equation (32) has the solution (30) if and only if the solution satisfies (31). �

Theorem 6. Equation (32) admits the generalized conditional symmetry

σ = vxt (34)

if and only ifA(v), B(v) andQ(v) satisfy the following:

(1) UnderQ = 0 (
A′

B

)′
= 0

[
(n + 1)A +B ′

B

]′
= 0. (35)

(2) UnderQ 6= 0

B = eαv A = A0eαv Q = Q0eαv (36)

whereα, A0 andQ0 are constants.

Proof. A straightforward calculation shows

σ ′K =
[
(n + 1)

(
A′ − AB

′

B

)
+B ′′ − B

′2

B

]
(vx)

nvxx

+

(
A′′ − B

′

B
A′
)
(vx)

n+2 +

(
Q′ − B

′

B
Q

)
vxx +

(
Q′′ − B

′

B
Q′
)
(vx)

2 (37)
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whereK = B(v)(vx)n−1vxx +A(v)(vx)n+1 +Q(v)vx . Expression (37) vanishes leading to

(n + 1)

(
A′ − AB

′

B

)
+B ′′ − B

′2

B
= 0

A′′ − B
′

B
A′ = 0 Q′ − B

′

B
Q = 0 Q′′ − B

′

B
Q′ = 0

(38)

which gives (35) and (36). �

Theorem 7. Suppose that the coefficient functions of equation (32) satisfy

A′

B
= α (n + 1)A +B ′

B
= β Q = 0 (39)

whereα, β are constants. Then equation (32) has the solution of the form (30) if and only if
f̄ (t) and ḡ(x) satisfy the following system of ordinary differential equations:

f̄ ′ = B(f̄ + ḡ)(ḡ′)n−1ḡ′′ +A(f̄ + ḡ)(ḡ′)n+1

ḡ′ḡ′′′ + (n− 1)(ḡ′′)2 + α(ḡ′)4 + β(ḡ′)2ḡ′′ = 0.
(40)

Theorem 8. Suppose that the coefficient functions of equation (32) satisfy

A = A0eαv B = eαv Q = Q0eαv (41)

whereα, A0 andQ0 are constants. Then equation (32) has the solution (30) if and only iff̄

and ḡ satisfy the following ordinary differential equations:

f̄ ′ = λeαf̄ (ḡ′)n−2ḡ′′ +A0(ḡ
′)n +Q0 = λe−αḡ (42)

whereλ is a constant.

Theorem 9. Equation (32) admits the generalized conditional symmetry (34), if and only if it
is scale equivalent to one of the following equations:

vt = (vx)n−1vxx + (vx)
n+1 + λvx (43a)

vt = ev[(vx)
n−1vxx + δ(vx)

n+1 + λvx ] (43b)

vt = (e(n+1)v + 1)(vx)
n−1vxx + (vx)

n+1 (43c)

vt = (e(n+1)v − 1)(vx)
n−1vxx − (vx)n+1 (43d)

vt = (1− e−(n+1)v)(vx)
n−1vxx − (vx)n+1 (43e)

vt = vev(vx)
n−1vxx +

(v − 1)ev

n + 1
(vx)

n+1 (43f)

vt = (eδv coshv)(vx)
n−1vxx − eδv(sinhv − δ coshv)(vx)

n+1 σ 6= ±1 (43g)

vt = (eδv) sinhv(vx)
n−1vxx − eδv(coshv − δ sinhv)(vx)

n+1 σ 6= ±1 (43h)

vt = (eδv cosv)(vx)
n−1vxx + eδv(sinv + δ cosv)(vx)

n+1 − π
2
< v <

π

2
(43i)

whereδ andλ are constants.

Proof. By theorems 7 and 8, equation (32) admits the generalized conditional symmetry (34)
if and only ifA, B andQ satisfy (35) and (36).

If Q 6= 0, from (36), we find equation (32) is equivalent to (43a) asα = 0, and (43b) as
α 6= 0.

If Q = 0, thenA, B andQ satisfy

B = A′

α
A′′ − βA′ + (n + 1)αA = 0. (44)
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We consider the positive solutions ofB(v) for the second-order constant-coefficient ordinary
differential equations (44) for all possible valuesα andβ. Using the first equation of (44) to
obtainB gives equations (43c)–(43i) and (43a) with λ = 0. �

Theorem 10. Equation (1) admits a separation of variables if and only if the coefficient
functionsD(u) andP(u) are scale equivalent to one of the following functions:

D = u1−n P = λ (45a)

D = λ exp(e
λ
2u + 2u + s) P = λe2u + 2s (45b)

D = e2u(e2u + s)
2n−2
3−2n P = λ

(
3− 2n

2
e2u + s

) 1
3−2n

n 6= 3

2
(45c)

D = (u n−1
n − u2)−n P = 0 (45d)

D = (u2 − un−1
n )−n P = 0 (45e)

D = (u n−1
n + u2)−n P = 0 (45f)

D = h 2n2

n+1 e
2n
n+1h(u)

∫ h(u) dz

e
z
n+1z

2n+1
n+1

= u + u0 P = 0 (45g)

D = e
2n
n+1σh(u)[cosh(h(u))]

2n2

n+1

∫ h(u) dz

e
σz
n+1 (coshz)

2n+1
n+1

= u + u0 P = 0 (45h)

D = e
2n
n+1σh(u)[sinh(h(u))]

2n2

n+1

∫ h(u) dz

e
σz
n+1 (sinhz)

2n+1
n+1

= u + u0 P = 0 (45i)

D = e
2n
n+1σh(u)[cos(h(u))]

2n2

n+1

∫ h(u) dz

e
σz
n+1 (cosz)

2n+1
n+1

= u + u0 P = 0 (45j)

whereλ, s andu0 are constants.

Proof. Equation (32) is transformed into equation (1) by a transformation of the variable
v = h(u) if and only ifA, B,D andP satisfy

nD = B[h′(u)]n−1 (46a)

D′ = A(h′)n +B(h′)n−2h′′. (46b)

From (46a) and (46b), we get

D′

nD
= A

B
h′ +

h′′

h′
. (47)

The integral to (47) implies

D = exp

[
n

∫ h(u) A(z)

B(z)
dz

]
(h′)n. (48)

Combining (48) and (46a), we get

D = n−nBn(h(u)) exp

[
1− n
n

∫ h(u) A(z)

B(z)
dz

]
P(u) = Q(h(u)) (49)

whereh(u) satisfies

h′ = B(h)

n
exp

[
− n

∫ h(u) A(z)

B(z)
dz

]
.

For example, considering equation (43c), A, B andQ are given by

B = 1 + e(n+1)v A = 1 Q = 0.
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Solving system (46), we find thatD is scale equivalent to

D = (u n−1
n − u2)−n

and the change of variable is

v = h(u) = − 1

n + 1
ln(u−

n+1
n − 1)

which implies the change of variablev = h(u) transforms equation (43c) to (45d). �

In the same way, we can prove that equations (43a), (43b), (43d),(43e), (43f ), (43g),(43h),
and (43i) are transformed to (45a), (45b) and (45c), (45e), (45f ), (45g), (45h), (45i) and (45j )
respectively.

We now use the above results to obtain some exact solutions of equation (1). Some
solutions cannot be derived by Lie’s classical method.

Example 1. The equation

ut = [(u2 − un−1
n )−n(ux)n]x (50)

is transformed into the equation

wt = (w2 − w1−n)(wx)n−1wxx − w(wx)n+1 (51)

by the change of variable

u = (1− w−n−1)−
n
n+1 . (52)

It follows from theorem 9 and the transformationv = lnw, that equation (51) has a separable
solution (29) if and only if

f ′ = f n+2[g(g′)n−1g′′ − (g′)n+1] − fg−n(g′)n−1g′′. (53)

The two quantities

ρ = g(g′)n−1g′′ − (g′)n+1 ν = g−n(g′)n−1g′′ (54)

are invariants of the third-order ordinary differential equation

g′′′ = ng′g′′

g
− (n− 1)

(g′′)2

g′
. (55)

We consider three cases as follows:

(i) ρ = 0, ν 6= 0.
In this case

f (t) = e−t g(x) = ex.

Hence we get the travelling wave solution of equation (50)

u = en(x−t)

[e(n+1)(x−t) − 1]
n
n+1
.

This solution can be obtained by the classical method.
(ii) ρ 6= 0, ν = 0.

This case leads to the similarity solution of equation (50)

u = [1− (n + 1)tx−n−1]−
n
n+1

which can be obtained by the classical method.
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(iii) ρ 6= 0, ν 6= 0.
In this caseg(x) is implicitly given by∫ g(x) ds

(sn+1− 1)
1
n+1

= x (56)

or ∫ g(x) ds

(sn+1 + 1)
1
n+1

= x (57)

or ∫ g(x) ds

(1− sn+1)
1
n+1

= x (58)

respectively, in terms of the sign ofρ andν. f (t) is implicitly given by∫ f (t) ds

sn+2− s = t.
These solutions cannot be obtained by the classical method.

Example 2. The equation

ut = [(u2 + u
n−1
n )−n(ux)n]x (59)

is transformed into the equation

wt = (−1)n[(w1−n − w2)(wx)
n−1wxx +w(wx)

n+1] (60)

by the change of variable

u = (w−n−1− 1)−
n
n+1 . (61)

Equation (59) is a generalization of the important Mullins [38] equation

ut =
( ux

u2 + 1

)
x
. (62)

Similar to example 1, equation (60) has a separable solution (29) if and only if

f ′ = (−1)n[f n+2((g′)n+1− g(g′)n−1g′′) + fg−n(g′)n−1g′′]. (63)

The separable solutions of equation (59) are then given by the following:

(i)

f (t) = e(−1)nt g(x) = ex.

So we get the travelling wave solution

u = en(x+(−1)nt)

[1− e(n+1)(x+(−1)nt)]
n
n+1
.

This solution can be obtained by the classical method.
(ii) This case leads to the similarity solution of equation (59)

u = [−1 + (−1)n−1(n + 1)tx−n−1]−
n
n+1

which can also be obtained by the classical method.
(iii) In this caseg(x) is implicitly given by (56)–(58) respectively, andf (t) is implicitly given

by ∫ f (t) ds

sn+2− s = (−1)nt.

These solutions cannot be obtained by the classical method.
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Example 3. Equation (1) with

D(u) = h 2n2

n+1 e
2n
n+1h P (u) = 0 (64)

whereh(u) is determined implicitly by∫ h(u) dz

z
2n+1
n+1 e

z
n+1

= u

is transformed into the equation

wt = w2−n lnw(wx)
n−1wxx +wn−1

(
− n

n + 1
lnw − 1

n + 1

)
(wx)

n+1 (65)

by the change of variable

u =
∫ lnw ds

s
2n+1
n+1 e

s
n+1

.

Equation (65) admits the separable solution (29) if and only if

f ′ = f 2 ln f
[
g1−n(g′)n−1g′′ − n

n + 1
g−n(g′)n+1

]
+f 2

[(
g1−n(g′)n−1g′′ − n

n + 1
g−n(g′)n+1

)
ln g − 1

n + 1
g−n(g′)n+1

]
. (66)

The quantities

ρ = g1−n(g′)n−1g′′ − n

n + 1
g−n(g′)n+1

ν =
[
g1−n(g′)n−1g′′ − n

n + 1
g−n(g′)n+1

]
ln g − 1

n + 1
g−n(g′)n+1

(67)

are two invariants of the equation

g′′′ = (2n− 1)
g′g′′

g
+ (1− n)(g

′′)2

g′
− n2

n + 1

(g′)3

g2
. (68)

We distinguish two cases:

(i) ρ = 0, ν 6= 0.
Without loss of generality, we putν = −1. This case leads to the similarity solution,
which can be obtained by the classical method:

w = (n + 1)−n
xn+1

t
.

(ii) ρ 6= 0.
In this case,f (t) andg(x) are given implicitly by∫ ln f e−s

s + ν
ds = t

∫ ln g e
s
n+1

(s − ν) 1
n+1

ds = (n + 1)
1
n+1x.

This solution cannot be obtained by the classical method.

Since equation (1) withP = 0 is invariant under transformations

t∗ = eε(t + t0) x∗ = e(n+1)ε(x + x0)

if u = u(x, t) is a solution of equation (1), thenv = u(ε(x + x0), ε
n+1(t + t0)) is also its

solution.
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6. Discussion

In this paper, we presented the complete group classification of equation (1) and its potential
equation by using Lie’s classical method. The existence of nonlocal symmetries was also
discussed, and we proved that when the functions of diffusion and convection coefficients
satisfy some conditions, there are nontrival nonlocal symmetries for equation (1). Using the
generalized conditional symmetry method, we derived a complete list of canonical forms of
equation (1) which admit separation of variables in the coordinates. Several examples are
considered, and we derived some explicit and implicit exact solutions.
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